15 research outputs found

    Identification of a selective G1-phase benzimidazolone inhibitor by a senescence-targeted virtual screen using artificial neural networks

    Get PDF
    Cellular senescence is a barrier to tumorigenesis in normal cells and tumour cells undergo senescence responses to genotoxic stimuli, which is a potential target phenotype for cancer therapy. However, in this setting, mixed-mode responses are common with apoptosis the dominant effect. Hence, more selective senescence inducers are required. Here we report a machine learning-based in silico screen to identify potential senescence agonists. We built profiles of differentially affected biological process networks from expression data obtained under induced telomere dysfunction conditions in colorectal cancer cells and matched these to a panel of 17 protein targets with confirmatory screening data in PubChem. We trained a neural network using 3517 compounds identified as active or inactive against these targets. The resulting classification model was used to screen a virtual library of ~2M lead-like compounds. 147 virtual hits were acquired for validation in growth inhibition and senescence-associated β-galactosidase (SA-β-gal) assays. Among the found hits a benzimidazolone compound, CB-20903630, had low micromolar IC50 for growth inhibition of HCT116 cells and selectively induced SA-β-gal activity in the entire treated cell population without cytotoxicity or apoptosis induction. Growth suppression was mediated by G1 blockade involving increased p21 expression and suppressed cyclin B1, CDK1 and CDC25C. Additionally, the compound inhibited growth of multicellular spheroids and caused severe retardation of population kinetics in long term treatments. Preliminary structure-activity and structure clustering analyses are reported and expression analysis of CB-20903630 against other cell cycle suppressor compounds suggested a PI3K/AKT-inhibitor-like profile in normal cells, with different pathways affected in cancer cells

    A 'synthetic-sickness' screen for senescence re-engagement targets in mutant cancer backgrounds.

    Get PDF
    Senescence is a universal barrier to immortalisation and tumorigenesis. As such, interest in the use of senescence-induction in a therapeutic context has been gaining momentum in the past few years; however, senescence and immortalisation remain underserved areas for drug discovery owing to a lack of robust senescence inducing agents and an incomplete understanding of the signalling events underlying this complex process. In order to address this issue we undertook a large-scale morphological siRNA screen for inducers of senescence phenotypes in the human melanoma cell line A375P. Following rescreen and validation in a second cancer cell line, HCT116 colorectal carcinoma, a panel of 16 of the most robust hits were selected for further validation based on significance and the potential to be targeted by drug-like molecules. Using secondary assays for detection of senescence biomarkers p21, 53BP1 and senescence associated beta-galactosidase (SAβGal) in a panel of HCT116 cell lines carrying cancer-relevant mutations, we show that partial senescence phenotypes can be induced to varying degrees in a context dependent manner, even in the absence of p21 or p53 expression. However, proliferation arrest varied among genetic backgrounds with predominantly toxic effects in p21 null cells, while cells lacking PI3K mutation failed to arrest. Furthermore, we show that the oncogene ECT2 induces partial senescence phenotypes in all mutant backgrounds tested, demonstrating a dependence on activating KRASG13D for growth suppression and a complete senescence response. These results suggest a potential mechanism to target mutant KRAS signalling through ECT2 in cancers that are reliant on activating KRAS mutations and remain refractory to current treatments

    Cell-based screen for altered nuclear phenotypes reveals senescence progression in polyploid cells after Aurora kinase B inhibition.

    Get PDF
    Cellular senescence is a widespread stress response and is widely considered to be an alternative cancer therapeutic goal. Unlike apoptosis, senescence is composed of a diverse set of subphenotypes, depending on which of its associated effector programs are engaged. Here we establish a simple and sensitive cell-based prosenescence screen with detailed validation assays. We characterize the screen using a focused tool compound kinase inhibitor library. We identify a series of compounds that induce different types of senescence, including a unique phenotype associated with irregularly shaped nuclei and the progressive accumulation of G1 tetraploidy in human diploid fibroblasts. Downstream analyses show that all of the compounds that induce tetraploid senescence inhibit Aurora kinase B (AURKB). AURKB is the catalytic component of the chromosome passenger complex, which is involved in correct chromosome alignment and segregation, the spindle assembly checkpoint, and cytokinesis. Although aberrant mitosis and senescence have been linked, a specific characterization of AURKB in the context of senescence is still required. This proof-of-principle study suggests that our protocol is capable of amplifying tetraploid senescence, which can be observed in only a small population of oncogenic RAS-induced senescence, and provides additional justification for AURKB as a cancer therapeutic target.This work was supported by the University of Cambridge, Cancer Research UK, Hutchison Whampoa; Cancer Research UK grants A6691 and A9892 (M.N., N.K., C.J.T., D.C.B., C.J.C., L.S.G, and M.S.); a fellowship from the Uehara Memorial Foundation (M.S.).This is the author accepted manuscript. The final version is available from the American Society for Cell Biology via http://dx.doi.org/10.1091/mbc.E15-01-000

    Stable inheritance of telomere chromatin structure and function in the absence of telomeric repeats

    No full text
    It is generally believed that telomeric repeats are a necessary and sufficient cis-element for telomere function. Here we show that telomere structure and meiotic function are stably inherited in fission yeast circular chromosomes that have lost all telomeric repeats. We found that the telomeric repeat binding protein, Taz1, and the heterochromatin protein, Swi6, remain associated with subtelomeres in the absence of telomeric repeats. We also found that the fusion point of circular chromosomes that lack telomeric repeats associates with SPB (the yeast counterpart of the centrosome) in the premeiotic horsetail stage, similarly to wild-type telomeres. However, a taz1(+) deletion/reintroduction experiment revealed that the maintenance of Taz1 binding and premeiotic function is achieved via different strategies. Taz1 is recruited to subtelomeres by an autonomous element present in subtelomeric DNA, thus in a genetic mechanism. In contrast, the premeiotic subtelomere-SPB association is maintained in an epigenetic manner. These results shed light on the previously unrecognized role played by the subtelomere and underscore the robust nature of the functional telomere complex that is maintained by both genetic and epigenetic mechanisms. Furthermore, we suggest that the establishment and the maintenance of the functional telomere complex are mechanistically distinguishable

    Balance between Distinct HP1 Family Proteins Controls Heterochromatin Assembly in Fission Yeast▿ †

    No full text
    Heterochromatin protein 1 (HP1) is a conserved chromosomal protein with important roles in chromatin packaging and gene silencing. In fission yeast, two HP1 family proteins, Swi6 and Chp2, are involved in transcriptional silencing at heterochromatic regions, but how they function and whether they act cooperatively or differentially in heterochromatin assembly remain elusive. Here, we show that both Swi6 and Chp2 are required for the assembly of fully repressive heterochromatin, in which they play distinct, nonoverlapping roles. Swi6 is expressed abundantly and plays a dose-dependent role in forming a repressive structure through its self-association property. In contrast, Chp2, expressed at a lower level, does not show a simple dose-dependent repressive activity. However, it contributes to the recruitment of chromatin-modulating factors Clr3 and Epe1 and possesses a novel ability to bind the chromatin-enriched nuclear subfraction that is closely linked with its silencing function. Finally, we demonstrate that a proper balance between Swi6 and Chp2 is critical for heterochromatin assembly. Our findings provide novel insight into the distinct and cooperative functions of multiple HP1 family proteins in the formation of higher-order chromatin structure

    Autophagy mediates the mitotic senescence transition

    No full text
    As a stress response, senescence is a dynamic process involving multiple effector mechanisms whose combination determines the phenotypic quality. Here we identify autophagy as a new effector mechanism of senescence. Autophagy is activated during senescence and its activation is correlated with negative feedback in the PI3K–mammalian target of rapamycin (mTOR) pathway. A subset of autophagy-related genes are up-regulated during senescence: Overexpression of one of those genes, ULK3, induces autophagy and senescence. Furthermore, inhibition of autophagy delays the senescence phenotype, including senescence-associated secretion. Our data suggest that autophagy, and its consequent protein turnover, mediate the acquisition of the senescence phenotype

    Three-Dimensional Localization of an Individual Fluorescent Molecule with Angstrom Precision

    No full text
    Among imaging techniques, fluorescence microscopy is a unique method to noninvasively image individual molecules in whole cells. If the three-dimensional spatial precision is improved to the angstrom level, various molecular arrangements in the cell can be visualized on an individual basis. We have developed a cryogenic reflecting microscope with a numerical aperture of 0.99 and an imaging stability of 0.05 nm in standard deviation at a temperature of 1.8 K. The key optics to realize the cryogenic performances is the reflecting objective developed by our laboratory. With this cryogenic microscope, an individual fluorescent molecule (ATTO647N) at 1.8 K was localized with standard errors of 0.53 nm (<i>x</i>), 0.31 nm (<i>y</i>), and 0.90 nm (<i>z</i>) when 10<sup>6</sup> fluorescence photons from the molecule were accumulated in 5 min
    corecore